Public Affairs 818:
Introduction to Quantitative Methods for Public Policy Analysts

Fall 2013

Monday/Wednesday 2:30 p.m. to 3:45 p.m.
Van Vleck B239

Instructor: Dave Weimer
weimer@lafollette.wisc.edu
263-2325

Teaching Assistant: Wilson Law
wblaw@wisc.edu

Office Hours: Mondays and Wednesdays, 10:00 a.m.–noon, 215 North Hall
Mondays 4:00 p.m.– 5:00 p.m., 215 North Hall
Appointments for other times welcome.

Policy analysts and public managers often use evidence and models to assess what has happened, what is happening, and what would happen under current policy and alternatives to it. Like social scientists, they seek to understand both associations (X and Y tend to occur together) and causality (X causes Y). They can draw on general principles of research design and statistical inference in their efforts. However, unlike social scientists who have the luxury of choosing questions that can be confidently answered, policy analysts and public managers must often assess and predict based on limited data, making an understanding of the concepts and limitations of methods of inference all the more important. In this course we seek to develop this understanding.

The course provides useful introductions to three topics: probability theory, statistical inference, and linear models. Aside from being foundational to statistical inference, probability theory provides tools for constructing models of random processes useful in assessing alternative policies. The concepts of statistical inference allow us to estimate parameters of probability models that generate samples of data, characterize our uncertainty about these estimates, and test hypotheses about their true values. One very useful branch of statistical inference involves the specification and estimation of linear regression models that assess the independent impacts of a number of variables on some other variable of interest.

At the conclusion of the course, you should be comfortable with basic concepts of probability theory and their application in simple models useful in policy analysis. You should also have a sound understanding of research design and statistical inference and know how to use and interpret simple linear models. In addition, you should have sufficient experience with Stata to be able to use it independently in the future. Finally, you should be well prepared to learn more about multivariate statistical methods in PA 819.
Assignments (30 percent of final grade)

We seek to learn by doing. Three types of exercises will help us do so:

Warm-Up Exercises: The primary purpose of warm-up exercises is to give you some exposure to topics before we cover them in class. A secondary purpose is to help you learn how to do things in Stata, a very powerful and flexible statistical package. Most weeks will have a warm-up exercise that you should complete before the Monday class. Although the warm-up exercises are not graded, they will sometimes ask you to bring specific results with you to class for reference in discussions. It would be a good idea to keep a list of all the Stata commands that you use in these exercises.

Application Exercises: The purpose of application exercises is to give you practice in applying the concepts we cover in class. The first exercise involves a simulation model. The rest typically involve analyzing a sample of data useful for answering some policy question. Some of these exercises require you to present your results in memorandum format. These exercises will be graded.

Problem Sets: The purpose of problem sets is to help reinforce and increase the depth of your understanding of the concepts covered in class. They range from simple to somewhat challenging. Put effort into these problems, but seek help from me or the teaching assistant if they become frustrating. Problem sets will be graded.

Examinations (60 percent of final grade)

A midterm examination (25 percent of final grade) will be held in class on October 30. A final examination (35 percent of the final grade) will be held as scheduled during the examination period. You may bring one standard-sized sheet of paper with notes to use in the final examination.

Data Analysis Project (10 percent of final grade)

Your task is to identify and use a data set relevant to some policy question. You may want to consult Mark H. Maier and Jennifer Imazeki (2013) *The Data Game: Controversies in Social Science Statistics* (Armok, NY: M.E. Sharpe), which is on reserve at College Library, to help find interesting data sets. Although the more relevant statistical methods for projects will likely be covered toward the end of the course, I highly recommend identifying an interesting data set by mid-semester. Your analysis should be presented concisely in a memorandum format with supporting appendices. Your report is due December 11.

Textbook

Finding an appropriate textbook for this course was challenging because we will be covering topics in both applied probability and statistics and because of the high cost of the most
promising texts. Ultimately, I decided to ask you to purchase Murry R. Spiegel, John Shiller, and R. Alu Srinivasan, *Probability and Statistics*, 4th Edition (New York, NY: McGraw-Hill, 2013). This is a book that was originally in the Shaum’s Outline series and therefore intended to be both a study guide and reference. I chose it for the following reasons. First, it covers almost all the technical issues we will encounter in the course as well as a few others. Second, it serves as a reference for most of the formulas we will encounter. Third, it provides a large number of problems with answers so that you can practice applying concepts on your own. Finally, it is relatively inexpensive—you should be able to purchase a new copy for less than $25.

The last section of the course will introduce material that will be developed in more depth in PA 819. You may find it useful to look now for a used copy of that text for reference in the last section of this course. It is James H. Stock and Mark W. Watson, *Introduction to Econometrics* 3rd Ed. (Prentice Hall, 2010). A copy will be on reserve at College Library.

Tentative Schedule

Class 1: Introduction: Description, Stochastic Modeling, Estimation, Inference, Prediction

Part I: Probability Theory and Stochastic Modeling

Week 1: Basic Concepts and Discrete Distributions

Warm-Up: Discrete Probability Distributions

S: Chapter 1; Chapter 4 (Binomial, Poisson, Multinomial, and Hypergeometric Distributions)

Week 2: Continuous Distributions

Warm-Up: Continuous Probability Distributions

Problem Set 1 (due Friday, September 20)

S: Chapter 3 (skip over material on continuous distributions); Chapter 4 (Normal and Uniform Distributions)

Week 3: Additional Topics and Stochastic Models: Monte Carlo and Queuing Models

Warm-Up: Monte Carlo Sensitivity Analysis

S: Chapter 3: (Chebyshev’s Inequality, Law of Large Numbers, Central Limit Theorem)
Week 4: Agent-Based Models

Warm-Up: Dynamic Concentration

* Adam Thomas, Quentin Karpilow, and Alex Gold (2013) *FamilyScape 2.0: An Architectural Overview*. Center on Children & Families, Brookings (March). (Available at learn@uw)

Application Exercise 1 (due Friday, September 28)

Week 5: Decision Analysis: Extensive and Normal Forms

Warm-Up: Bayes’ Rule

Problem Set 2 (due Friday, October 11)

Part II: Statistical Inference

Week 6: Experimental and Quasi-Experimental Design

Warm-Up: Contingency Tables

S^3: Chapters 5 (Sample means and variances)
Week 7: Classical Statistical Inference: Introduction to Hypothesis Testing

Warm-Up: χ^2, Student’s t, and F Distributions

S^3: Chapters 6 and 7

Problem Set 3 (due Friday, October 25)

Week 8: Review and Midterm on October 30

Warm-Up: Central Limit Theorem

Week 9: Applications and Introduction to Multiple Variables

Warm-Up

S^3: Chapter 4

Application Exercise 2: (due Friday, November 9)

Part III: Linear Models

Week 10: Optimization and Introduction to Ordinary Least Squares

Warm-Up: Simple Regression

Phil Cook’s lessons on presenting statistical analyses. (Available at learn@uw)

Week 11: Properties of OLS Estimators

Warm-Up: Mean and Variance

Problem Set 4 (due Friday, November 22)
Week 12: Multivariate Regression

Warm-Up: Multicollinearity

S*: Chapters 8 (pages 265–271)

Week 13: Maximum Likelihood Estimation and Discrete Dependent Variables

Warm-Up: Interpreting Logistic Regressions

Application Exercise 3 (due Friday, December 6)

Week 14: Causality in Natural Experiments

Warm-Up: Endogenous Regressors

* Optional